Lindstr\"om theorems characterize logics in terms of model-theoretic conditions such as Compactness and the L\"owenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstr\"om theorems for these languages can be challenging, as most known...

Source: http://arxiv.org/abs/0905.3668v2

The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic...

Topics: Mathematics, Logic

Source: http://arxiv.org/abs/1411.7636